PMSM Motor and PWM NMOS Drive

Permanent Magnet Synchronous Machine (PMSM) and PWM Drive circuit, with mechanical load. The drive includes a D-Q control algorithm, and uses space-vector modulation (SVM) to generate the digital PWM signals to drive the Power MOSFET switches of the inverter.

There are two other versions of this design. The first, "PMSM Motor And Ideal Drive", uses continuous Clarke and Park Transform models and an ideal voltage drive to represent the main features of the field-oriented control system., Another version, "PMSM Motor and PWM Drive", it similar to this version but uses ideal switches.

This version is the most detailed and therefore simulated the most slowly. It is well suited for understanding the performance of the Power MOSFETs in the context of the system, In the waveform plot on the right, the actual motor shaft angle (orange waveform) and the A-phase current (dark blue waveform) are shown. These are very similar to the results for the other two versions of the design. But the waveform plot on the left provides insight into the performance of the C-phase inverter pull-up switch. The MOSFET current Ids (green waveform), and the average power dissipated in the device (red waveform) are shown. This design can be used to size specific parts in the drive electronics, by comparing the operating conditions to which they are exposed, relative to their rated operational limits.

Mike Donnelly's picture

Points

8266

Mike Donnelly

Joined November 8, 2013
Design added Monday, October 10, 2016 | 1:09 pm PDT